PLEASE REFER TO :http://kadaitcha.cx/xp/stop_error.html
The cpu of my friend's computer is changed with another one, and the system(vista) will not be able to start up , and will hault at a blue screen.
Resolution:reinstall the VISTA on the hard disk.
Tuesday, November 18, 2008
Tuesday, October 28, 2008
My Pcs
Wednesday, August 13, 2008
Friday, July 18, 2008
有哪个晓得CPU的散热膏硅脂怎么买?
如果是硅酯直接用纸巾擦掉就可以,硅胶在加热的情况下才能去掉,用酒精一类的溶剂清洗安全些。
硅脂类
白色导热硅脂。这种导热硅脂最常见,常温下是粘稠的液体状态,它在市场上被分成了不同的价格级别,其实这些不同价格的白色导热硅脂,区别就是粘稠度不同,大家要注意选择粘稠度适当的导热硅脂。
灰色导热硅脂。这种导热硅脂是Inter公司的原装导热硅酯,他在白色导热硅酯的基础上添加了一定的石墨,增强了导热性能。
告诉大家笔者的一些经验,我们可以手动调配更具有导热能力的导热硅脂!
Inter原装导热硅脂配置方案
原料:白色导热硅脂和铅笔。
方法:把白色导热硅脂放到玻璃板上,然后将铅笔放在上面磨,边磨边与导热硅脂搅拌,等磨到一定程度后(由于白色导热硅脂的粘稠度不同,添加石墨的多少也就没有统一标准,通常是看到硅脂比较稠了就停止涂抹),"Intel原装导热硅脂"就做成了。但要注意一点,在制作的过程中不要太用力的磨,否则铅笔芯颗粒太大反而会影响导热效果。
锡导热硅脂配置方案
原料:焊锡,白色导热硅脂。
方法:将白色导热硅脂涂抹到金属块上面(表面不能太光滑),用焊锡在上面磨(需要用较大的力气),磨到硅脂的粘稠度差不多就停止。
铝导热硅脂配置方案
原料:两块铝散热块(把上面黑色或绿色的漆磨掉露出金属部分),白色导热硅脂
方法:将白色导热硅脂涂抹到散热块的金属表面,用另一块散热块压在导热硅脂上用力磨,同样磨到粘稠度差不多就行了。
以上就是笔者曾经配置过的超级导热导热硅脂,此外,大家还可以尝试添加一些其它原料。但要注意并非往导热硅脂中添加任何原料都会使其导热效果增强,因为这不仅与你所添加的物质有关,还与你添加物质的量有关。实际效果如何,最后还得通过测试来判断。
测试方法:选择环境温度基本不变的地方,使用同一台PC机,分次将不同的导热硅脂涂抹到CPU和散热块之间(涂抹的时候注意每次涂抹的量要基本相同,否则测出的数据不准确),然后开机进入BIOS,过5分钟后使用主板的温度探测功能,看温度的差别。
另外还需要注意:根据理论来说,使用金属磨制的导热硅脂,效果是最好的,并且不同金属调制得到热硅脂的导热冷能力顺序应该按照金属得导热能力顺序来排列,但实际上笔者测试了多种方法,发现许多次使用金属调制的硅脂的导热能力有时比用铅笔调制的导热能力要差些,这是因为用金属硬度很大要磨出细小的粉末,比较困难。还有白色的导热硅脂是绝缘的,但经过调制后的硅脂由于里面添加了其它原料,可能会有一定的导电能力。大家在涂抹导热硅脂的时候一定要注意不要把它弄得到处都是,否则会造成线路短路。对于初学者以及使用AMD毒龙、雷鸟系列CPU的用户笔者强烈建议不要配置这种具有导电能力的硅脂,因为AMD的CPU表面许多裸露的铜导线,如果使用导电的硅脂非常容易造成短路!
如果到电子设备市场购买这一类导热介质的时候需要注意,硅脂类还有一种叫做导电硅脂,这种硅脂具有导电性,用在CPU上面比较危险。不过普通电脑市场上没有这种硅脂出售。
硅胶类
硅胶的种类比较多,颜色也不一样,但是有一个特点就是:低温下凝固(固态),高温溶解(粘稠液态),具有导热性。通常一些散热块底部都有一些导热硅胶他们的工作原理:第一次使用的时候导热硅胶被CPU高温熔化然后均匀粘合CPU和散热块,由于散热块紧密接触CPU以后,在散热块的作用下温度很快降下来,于是CPU就和散热块通过导热硅胶紧密地联结起来了。
需要注意的是,如果你单独去购买导热硅胶,必须要看清楚是导热硅胶!因为在工业上有一种硅橡胶,外观是白色牙膏状的,它的特点是防水、绝热、耐高温,刚好和硅胶相反。我的一位同学去购买的时候就遇到了JS结果买了硅橡胶回来粘上散热块以后,散热块居然一点温度都没有!!!购买时一定注意!!!
这就是我们常见的导热介质,那么它们的导热能力如何呢?金属散热块的传热能力远远大于导热硅脂,而导热硅脂的传热能力又比导热硅胶好(笔者从来都是把散热块下面的硅胶除去然后自行涂抹导热硅脂)。
既然导热硅脂导热能力比金属散热块差那么为什么我们又要使用它?这是因为金属散热块和CPU不可能接触得非常紧密,总有一些缝隙,利用导热硅脂填补这些缝隙就可以进一步地提高散热效果。注意,我们是使用导热硅脂来填补缝隙,而不是大量地使用导热硅脂来连接散热块和CPU。这是因为导热硅脂的传热能力比金属散热块差,我们需要的是让金属散热块更多地接触CPU而不是用大量导热硅脂来连接。看了这些大家应该明白了为什么我们涂膜导热硅脂需要均匀而且薄!
过多地涂抹了导热硅脂出了降低散热效果之外还有许多坏处。
下面我们来看看多涂导热硅脂的其他危害。刚才我们已经说了导热硅脂是绝缘的,并且具有液态的特点--流动性。那么过多地涂抹了导热硅脂以后当导热硅脂流到了CPU的插槽上面会有什么后果?理论上CPU针脚被绝缘了,会导致CPU无法工作!但实际上并不是这样,笔者就遇到过这种事故。导热硅脂流到了CPU插槽以后电脑仍然可以正常开机使用,但是超频能力大大下降,并且经常出现重新启动,开机不亮等等许多莫名其妙的故障!而且清洗CPU插槽和CPU针脚非常的困难!
另外过多地涂抹导热硅脂对AMD公司的CPU来说危害更大!大家如果仔细对比AMD(毒龙、雷鸟)公司和inter(赛扬2、奔腾3)公司的的CPU可以发现AMD公司的CPU表面露出了许多铜导线,〔如图!!!!!!!〕而INTER公司的CPU表面是有一层绝缘层的。理论上导热硅脂是绝缘的遇到了AMD公司的CPU表面露出的铜导线是不会有什么影响的,然而实际上影响非常巨大,笔者自己就遇到过这个故障,现象:超频能力大大降低(当然如果你不超频影响不大)。
上所述大家一定要正确地使用导热介质,笔者已经将为什么要使用导热介质的原理告诉了大家,在明白了这些原理以后那么应该怎么做笔者就不多说了。
硅脂类
白色导热硅脂。这种导热硅脂最常见,常温下是粘稠的液体状态,它在市场上被分成了不同的价格级别,其实这些不同价格的白色导热硅脂,区别就是粘稠度不同,大家要注意选择粘稠度适当的导热硅脂。
灰色导热硅脂。这种导热硅脂是Inter公司的原装导热硅酯,他在白色导热硅酯的基础上添加了一定的石墨,增强了导热性能。
告诉大家笔者的一些经验,我们可以手动调配更具有导热能力的导热硅脂!
Inter原装导热硅脂配置方案
原料:白色导热硅脂和铅笔。
方法:把白色导热硅脂放到玻璃板上,然后将铅笔放在上面磨,边磨边与导热硅脂搅拌,等磨到一定程度后(由于白色导热硅脂的粘稠度不同,添加石墨的多少也就没有统一标准,通常是看到硅脂比较稠了就停止涂抹),"Intel原装导热硅脂"就做成了。但要注意一点,在制作的过程中不要太用力的磨,否则铅笔芯颗粒太大反而会影响导热效果。
锡导热硅脂配置方案
原料:焊锡,白色导热硅脂。
方法:将白色导热硅脂涂抹到金属块上面(表面不能太光滑),用焊锡在上面磨(需要用较大的力气),磨到硅脂的粘稠度差不多就停止。
铝导热硅脂配置方案
原料:两块铝散热块(把上面黑色或绿色的漆磨掉露出金属部分),白色导热硅脂
方法:将白色导热硅脂涂抹到散热块的金属表面,用另一块散热块压在导热硅脂上用力磨,同样磨到粘稠度差不多就行了。
以上就是笔者曾经配置过的超级导热导热硅脂,此外,大家还可以尝试添加一些其它原料。但要注意并非往导热硅脂中添加任何原料都会使其导热效果增强,因为这不仅与你所添加的物质有关,还与你添加物质的量有关。实际效果如何,最后还得通过测试来判断。
测试方法:选择环境温度基本不变的地方,使用同一台PC机,分次将不同的导热硅脂涂抹到CPU和散热块之间(涂抹的时候注意每次涂抹的量要基本相同,否则测出的数据不准确),然后开机进入BIOS,过5分钟后使用主板的温度探测功能,看温度的差别。
另外还需要注意:根据理论来说,使用金属磨制的导热硅脂,效果是最好的,并且不同金属调制得到热硅脂的导热冷能力顺序应该按照金属得导热能力顺序来排列,但实际上笔者测试了多种方法,发现许多次使用金属调制的硅脂的导热能力有时比用铅笔调制的导热能力要差些,这是因为用金属硬度很大要磨出细小的粉末,比较困难。还有白色的导热硅脂是绝缘的,但经过调制后的硅脂由于里面添加了其它原料,可能会有一定的导电能力。大家在涂抹导热硅脂的时候一定要注意不要把它弄得到处都是,否则会造成线路短路。对于初学者以及使用AMD毒龙、雷鸟系列CPU的用户笔者强烈建议不要配置这种具有导电能力的硅脂,因为AMD的CPU表面许多裸露的铜导线,如果使用导电的硅脂非常容易造成短路!
如果到电子设备市场购买这一类导热介质的时候需要注意,硅脂类还有一种叫做导电硅脂,这种硅脂具有导电性,用在CPU上面比较危险。不过普通电脑市场上没有这种硅脂出售。
硅胶类
硅胶的种类比较多,颜色也不一样,但是有一个特点就是:低温下凝固(固态),高温溶解(粘稠液态),具有导热性。通常一些散热块底部都有一些导热硅胶他们的工作原理:第一次使用的时候导热硅胶被CPU高温熔化然后均匀粘合CPU和散热块,由于散热块紧密接触CPU以后,在散热块的作用下温度很快降下来,于是CPU就和散热块通过导热硅胶紧密地联结起来了。
需要注意的是,如果你单独去购买导热硅胶,必须要看清楚是导热硅胶!因为在工业上有一种硅橡胶,外观是白色牙膏状的,它的特点是防水、绝热、耐高温,刚好和硅胶相反。我的一位同学去购买的时候就遇到了JS结果买了硅橡胶回来粘上散热块以后,散热块居然一点温度都没有!!!购买时一定注意!!!
这就是我们常见的导热介质,那么它们的导热能力如何呢?金属散热块的传热能力远远大于导热硅脂,而导热硅脂的传热能力又比导热硅胶好(笔者从来都是把散热块下面的硅胶除去然后自行涂抹导热硅脂)。
既然导热硅脂导热能力比金属散热块差那么为什么我们又要使用它?这是因为金属散热块和CPU不可能接触得非常紧密,总有一些缝隙,利用导热硅脂填补这些缝隙就可以进一步地提高散热效果。注意,我们是使用导热硅脂来填补缝隙,而不是大量地使用导热硅脂来连接散热块和CPU。这是因为导热硅脂的传热能力比金属散热块差,我们需要的是让金属散热块更多地接触CPU而不是用大量导热硅脂来连接。看了这些大家应该明白了为什么我们涂膜导热硅脂需要均匀而且薄!
过多地涂抹了导热硅脂出了降低散热效果之外还有许多坏处。
下面我们来看看多涂导热硅脂的其他危害。刚才我们已经说了导热硅脂是绝缘的,并且具有液态的特点--流动性。那么过多地涂抹了导热硅脂以后当导热硅脂流到了CPU的插槽上面会有什么后果?理论上CPU针脚被绝缘了,会导致CPU无法工作!但实际上并不是这样,笔者就遇到过这种事故。导热硅脂流到了CPU插槽以后电脑仍然可以正常开机使用,但是超频能力大大下降,并且经常出现重新启动,开机不亮等等许多莫名其妙的故障!而且清洗CPU插槽和CPU针脚非常的困难!
另外过多地涂抹导热硅脂对AMD公司的CPU来说危害更大!大家如果仔细对比AMD(毒龙、雷鸟)公司和inter(赛扬2、奔腾3)公司的的CPU可以发现AMD公司的CPU表面露出了许多铜导线,〔如图!!!!!!!〕而INTER公司的CPU表面是有一层绝缘层的。理论上导热硅脂是绝缘的遇到了AMD公司的CPU表面露出的铜导线是不会有什么影响的,然而实际上影响非常巨大,笔者自己就遇到过这个故障,现象:超频能力大大降低(当然如果你不超频影响不大)。
上所述大家一定要正确地使用导热介质,笔者已经将为什么要使用导热介质的原理告诉了大家,在明白了这些原理以后那么应该怎么做笔者就不多说了。
Sunday, April 6, 2008
IBM的笔记本的隐含分区及一键恢复
IBM的笔记本有个隐含分区,大概占4G左右的空间,里面做了一键恢复的系统,这是IBM THINKPAD的特色。当然有些私人用户买了IBM的电脑后,自己分区很有可能把IBM的这个隐含分区给删除掉,这样一来就不能使用IBM笔记本的一键恢复的功能了。
有些客户把隐含分区删了以后就要求我们帮他们做恢复出厂。当然办法还是有的,就是要拿一台相同型号的新机器做出一套系统恢复盘然后再装入要恢复的机器就可以了,不过这样的代价太大了。还有个办法就是先把硬盘都格式化,只留1个分区,然后再把要装的系统,上好驱动就把IBM TOOLS文件夹里的APPS里的东西都装上,当然最主要的还是RNR,这个软件就是做恢复的工具,现在做出来的恢复还不是很完善,只是保存在主分区中的,并不是象出厂一样有个隐含分区的。最后再放入WINXP的安装盘,找到SUPPORT下个TOOLS下做一下WINDOWS的封装就完成了。
不过就是有个遗憾就是做不出隐含分区,最好有时间有条件可以彻底研究下!
--打造IBM一键恢复
[1-4] 打造F11一键恢复
打造F11一键恢复
打造F11一键恢复系统
Sample Text以下内容是我浏览一个神舟电脑论坛的时候看到的,虽然神舟电脑确实的垃圾,但我感觉这篇帖子还是非常实用的,给那些懒人预备的。如果按以下方法可行的话就可以将原有的隐藏分区改为1G,这样就可以做一个纯净windows xp-sp2的镜象,而且也可以使其他牌子的本本具有同样F11一键恢复功能。已经有人在神舟的垃圾本上测试通过。
对于电脑用户来说,最头疼的问题莫过于系统崩溃后重装系统。虽然现在有形形色色的各种系统恢复工具,如品牌机自带的的系统恢复盘等等,但是都存在一个缺点,需要启动盘启动。蓝巨人IBM的F11功能倒是不错,无须启动盘。系统崩溃按下F11就自动恢复了,可惜为了这F11叫我等穷人去买IBM有点不太现实,难道我们就没办法了吗?不,功夫不负有心人,笔者经过参考网上文章,终于使自己的神舟优雅M153D笔记本用上了F11一键恢复功能。
IBM F11一键恢复原理:
IBM F11系统恢复的工作原理,他是在一个硬盘上有2个主分区,备份恢复分区默认为隐藏。当系崩溃按F11恢复时,隐藏的备份恢复分区自动设置为可见的活动分区,启动电脑后执行系统恢复。但是此系统存在一个缺陷,首先只有IBM用户才能享有,其次,恢复速度慢。
接下去笔者将自己利用IBM的系统恢复工具打造F11一键恢复系统过程介绍给大家,如有不足之处请各位批评指正。
准备阶段:
需要工具软件:d2dfdzip.exe(IBM的F11系统恢复工具,可在IBM官方网站下载)
PowerQuest PartitionMagic 8.0
GHOST 7.0 (8.0)
一 采用GHOST软件做好系统镜像文件
笔者在此就不多述,因为这个文件用于以后的系统恢复,所以笔者建议最好是重新安装操作系统,装好必须的应用软件,免的以后每次恢复得重新安装。
二 建立分区:
在WINDOWS下运行PQ8.0,建立分区。
1.在PQ中调整主分区C的大小,在其后空出2G空间用于做备份分区。
2.在主分区的剩余空间点右键-创建-弹出创建分区菜单,选择创建为主分区分区格式为FAT32,卷标为IBM_SERVICE。
3.然后点应用,系统重新启动后,卷标为IBM_SERVER,大小为2G的FAT32备份分区就创建完毕了。但是启动后发现我们I盘并没有出现,为什么?因为现在硬盘上有两个主分区,新建的分区隐藏了。我们再进入PQ,在新建的分区上点右键-高级-显现分区。
重启之后我们就可以看到我们新建的备份分区了。
注意:新建立的备份分区必须在主分区C的后面,假如建在主分区的前面或者建在扩展分区上都将导致F11功能无法使用。分区域格式必须为FAT32,否则DOS下的GHOST软件将无法正常运行。卷标必须为IBM_SERVICE,否则IBM 的F11恢复软件将不能工作。
三 备份分区的设置
1.使备份分区具有启动功能。因为当系统崩溃后,要使用备份分区来启动电脑,所以必须要在备份分区根目录下存在DOS的基本启动文件。可以在98系统下制作启动盘,或者用第二个办法,现在的D版光盘都带有启动功能,利用光盘启动电脑,自动默认盘符为A:,将A盘中的所有文件拷贝到硬盘上的备份分区中。(DOS三个基本启动文件COMMAND.COM MS-DOS.SYS IO.SYS)
2.拷贝GHOST软件和第一步做好的GHOST镜像文件到备份分区根目录。
3.用记事本创建Config.sys文件
Device = c:\\himen.sys
保存为config.sys
4.创建自动批处理文件AUTOEXEC.BAT
Ghost.exe -clone,mode=pload,src=c:\\winxp.gh1,dst=1:1 -sure –rb
注意:请不要修改此处的镜像文件路径:C:\\winxp.gho,笔者在第一次时将路径改为I,结果无法执行。原因是当备份分区激活启动时,原系统分区隐藏,备份分区成了C盘。
Dst=1:1是恢复文件到第一个硬盘的第一个分区。
四F11功能安装
1.将从IBM官方网站下载的d2dfdzip文件解压缩到C盘根目录,并修改其中的AUTOEXEC.BAT文件
a:\\bmgr.exe /Fboot.bin /Mbmgr%CC%.scr /s
a:\\bmgr.exe /Fboot.bin /Mbmgr%CC%.scr /s
将此两行的路径由a:设置成c:,因为我们的笔记没软驱是直接在C盘执行。
2.拷贝DOS的分区软件FDISK.EXE到C盘根目录,因为F11功能需要写硬盘引导记录。在刚才制作的启动盘中有。
3.用启动盘启动计算机到DOS下,转换盘符到C:,输入autoexec.bat
显示一个文件拷贝,按CTRL+ALT+DEL重新启动电脑。
重新启动后是不是发现我们的F11功能已经出现,我们的备份分区也自动隐藏了。
总结:
至此,我们的F11一键恢复系统就打造完成了。以后假如发生系统崩溃只要在重启时按一下F11,就自动恢复了。笔者的神舟幽雅M153D笔记本三用三星硬盘恢复速度达到650M,三分钟就拥有一个新的系统了。
此方法不仅可以在笔记本上使用,我们的台式机也同样适用。有了F11,我们再也不用怕系统崩溃拉 。
本文出自这里
有些客户把隐含分区删了以后就要求我们帮他们做恢复出厂。当然办法还是有的,就是要拿一台相同型号的新机器做出一套系统恢复盘然后再装入要恢复的机器就可以了,不过这样的代价太大了。还有个办法就是先把硬盘都格式化,只留1个分区,然后再把要装的系统,上好驱动就把IBM TOOLS文件夹里的APPS里的东西都装上,当然最主要的还是RNR,这个软件就是做恢复的工具,现在做出来的恢复还不是很完善,只是保存在主分区中的,并不是象出厂一样有个隐含分区的。最后再放入WINXP的安装盘,找到SUPPORT下个TOOLS下做一下WINDOWS的封装就完成了。
不过就是有个遗憾就是做不出隐含分区,最好有时间有条件可以彻底研究下!
--打造IBM一键恢复
[1-4] 打造F11一键恢复
打造F11一键恢复
打造F11一键恢复系统
Sample Text以下内容是我浏览一个神舟电脑论坛的时候看到的,虽然神舟电脑确实的垃圾,但我感觉这篇帖子还是非常实用的,给那些懒人预备的。如果按以下方法可行的话就可以将原有的隐藏分区改为1G,这样就可以做一个纯净windows xp-sp2的镜象,而且也可以使其他牌子的本本具有同样F11一键恢复功能。已经有人在神舟的垃圾本上测试通过。
对于电脑用户来说,最头疼的问题莫过于系统崩溃后重装系统。虽然现在有形形色色的各种系统恢复工具,如品牌机自带的的系统恢复盘等等,但是都存在一个缺点,需要启动盘启动。蓝巨人IBM的F11功能倒是不错,无须启动盘。系统崩溃按下F11就自动恢复了,可惜为了这F11叫我等穷人去买IBM有点不太现实,难道我们就没办法了吗?不,功夫不负有心人,笔者经过参考网上文章,终于使自己的神舟优雅M153D笔记本用上了F11一键恢复功能。
IBM F11一键恢复原理:
IBM F11系统恢复的工作原理,他是在一个硬盘上有2个主分区,备份恢复分区默认为隐藏。当系崩溃按F11恢复时,隐藏的备份恢复分区自动设置为可见的活动分区,启动电脑后执行系统恢复。但是此系统存在一个缺陷,首先只有IBM用户才能享有,其次,恢复速度慢。
接下去笔者将自己利用IBM的系统恢复工具打造F11一键恢复系统过程介绍给大家,如有不足之处请各位批评指正。
准备阶段:
需要工具软件:d2dfdzip.exe(IBM的F11系统恢复工具,可在IBM官方网站下载)
PowerQuest PartitionMagic 8.0
GHOST 7.0 (8.0)
一 采用GHOST软件做好系统镜像文件
笔者在此就不多述,因为这个文件用于以后的系统恢复,所以笔者建议最好是重新安装操作系统,装好必须的应用软件,免的以后每次恢复得重新安装。
二 建立分区:
在WINDOWS下运行PQ8.0,建立分区。
1.在PQ中调整主分区C的大小,在其后空出2G空间用于做备份分区。
2.在主分区的剩余空间点右键-创建-弹出创建分区菜单,选择创建为主分区分区格式为FAT32,卷标为IBM_SERVICE。
3.然后点应用,系统重新启动后,卷标为IBM_SERVER,大小为2G的FAT32备份分区就创建完毕了。但是启动后发现我们I盘并没有出现,为什么?因为现在硬盘上有两个主分区,新建的分区隐藏了。我们再进入PQ,在新建的分区上点右键-高级-显现分区。
重启之后我们就可以看到我们新建的备份分区了。
注意:新建立的备份分区必须在主分区C的后面,假如建在主分区的前面或者建在扩展分区上都将导致F11功能无法使用。分区域格式必须为FAT32,否则DOS下的GHOST软件将无法正常运行。卷标必须为IBM_SERVICE,否则IBM 的F11恢复软件将不能工作。
三 备份分区的设置
1.使备份分区具有启动功能。因为当系统崩溃后,要使用备份分区来启动电脑,所以必须要在备份分区根目录下存在DOS的基本启动文件。可以在98系统下制作启动盘,或者用第二个办法,现在的D版光盘都带有启动功能,利用光盘启动电脑,自动默认盘符为A:,将A盘中的所有文件拷贝到硬盘上的备份分区中。(DOS三个基本启动文件COMMAND.COM MS-DOS.SYS IO.SYS)
2.拷贝GHOST软件和第一步做好的GHOST镜像文件到备份分区根目录。
3.用记事本创建Config.sys文件
Device = c:\\himen.sys
保存为config.sys
4.创建自动批处理文件AUTOEXEC.BAT
Ghost.exe -clone,mode=pload,src=c:\\winxp.gh1,dst=1:1 -sure –rb
注意:请不要修改此处的镜像文件路径:C:\\winxp.gho,笔者在第一次时将路径改为I,结果无法执行。原因是当备份分区激活启动时,原系统分区隐藏,备份分区成了C盘。
Dst=1:1是恢复文件到第一个硬盘的第一个分区。
四F11功能安装
1.将从IBM官方网站下载的d2dfdzip文件解压缩到C盘根目录,并修改其中的AUTOEXEC.BAT文件
a:\\bmgr.exe /Fboot.bin /Mbmgr%CC%.scr /s
a:\\bmgr.exe /Fboot.bin /Mbmgr%CC%.scr /s
将此两行的路径由a:设置成c:,因为我们的笔记没软驱是直接在C盘执行。
2.拷贝DOS的分区软件FDISK.EXE到C盘根目录,因为F11功能需要写硬盘引导记录。在刚才制作的启动盘中有。
3.用启动盘启动计算机到DOS下,转换盘符到C:,输入autoexec.bat
显示一个文件拷贝,按CTRL+ALT+DEL重新启动电脑。
重新启动后是不是发现我们的F11功能已经出现,我们的备份分区也自动隐藏了。
总结:
至此,我们的F11一键恢复系统就打造完成了。以后假如发生系统崩溃只要在重启时按一下F11,就自动恢复了。笔者的神舟幽雅M153D笔记本三用三星硬盘恢复速度达到650M,三分钟就拥有一个新的系统了。
此方法不仅可以在笔记本上使用,我们的台式机也同样适用。有了F11,我们再也不用怕系统崩溃拉 。
本文出自这里
Recovery Sony AVIO VGN-FJ77C
My friend laptop Sony AVIO is down. The senario is: after AVIO logo appearing, the cursor will be dead.
I am trying to recover the default factory installation.
Search this link When the Vaio logo appears press F10
I press F10, and I utility come out and start running.
But I met a blue screen such as : dxg.sys issue, hardware,software causes this problem.
PAGE_FAULT_IN_NONPAGED_AREA ERROR:
Explanation:
This Stop message occurs when requested data is not found in memory. The system generates a fault, which normally indicates that the system looks for data in the paging file. In this circumstance, however, the missing data is identified as being located within an area of memory that cannot be paged out to disk. The system faults, but cannot find, the data and is unable to recover. Faulty hardware, a buggy system service, antivirus software, and a corrupted NTFS volume can all generate this type of error.
User Action:
This Stop message usually occurs after the installation of faulty hardware or in the event of failure of installed hardware (usually related to defective RAM, either main memory, L2 RAM cache, or video RAM). If hardware has been added to the system recently, remove it to see if the error recurs. If existing hardware has failed, remove or replace the faulty component. Run hardware diagnostics supplied by the system manufacturer. For details on these procedures, see the owners manual for your computer. Another cause of this Stop message is the installation of a buggy system service. Disable the service and determine if this resolves the error. If so, contact the manufacturer of the system service about a possible update. If the error occurs during system startup, restart your computer, and press F8 at the character-mode menu that displays the operating system choices. At the resulting Windows 2000 Advanced Options menu, choose the Last Known Good Configuration option. This option is most effective when only one driver or service is added at a time. Antivirus software can also trigger this Stop message. Disable the program and determine if this resolves the error. If it does, contact the manufacturer of the program about a possible update. A corrupted NTFS volume can also generate this Stop message. Run Chkdsk /f /r to detect and repair disk errors. Restart the system before the disk scan begins on a system partition. If the hard disk is SCSI, check for problems between the SCSI controller and the disk. Finally, check the System Log in Event Viewer for additional error messages that might help pinpoint the device or driver causing the error. Disabling memory caching of the BIOS might also resolve it. For more troubleshooting information about this Stop message, refer to the Microsoft Knowledge Base at http://support.microsoft.com/support.
I am trying to recover the default factory installation.
Search this link When the Vaio logo appears press F10
I press F10, and I utility come out and start running.
But I met a blue screen such as : dxg.sys issue, hardware,software causes this problem.
PAGE_FAULT_IN_NONPAGED_AREA ERROR:
Explanation:
This Stop message occurs when requested data is not found in memory. The system generates a fault, which normally indicates that the system looks for data in the paging file. In this circumstance, however, the missing data is identified as being located within an area of memory that cannot be paged out to disk. The system faults, but cannot find, the data and is unable to recover. Faulty hardware, a buggy system service, antivirus software, and a corrupted NTFS volume can all generate this type of error.
User Action:
This Stop message usually occurs after the installation of faulty hardware or in the event of failure of installed hardware (usually related to defective RAM, either main memory, L2 RAM cache, or video RAM). If hardware has been added to the system recently, remove it to see if the error recurs. If existing hardware has failed, remove or replace the faulty component. Run hardware diagnostics supplied by the system manufacturer. For details on these procedures, see the owners manual for your computer. Another cause of this Stop message is the installation of a buggy system service. Disable the service and determine if this resolves the error. If so, contact the manufacturer of the system service about a possible update. If the error occurs during system startup, restart your computer, and press F8 at the character-mode menu that displays the operating system choices. At the resulting Windows 2000 Advanced Options menu, choose the Last Known Good Configuration option. This option is most effective when only one driver or service is added at a time. Antivirus software can also trigger this Stop message. Disable the program and determine if this resolves the error. If it does, contact the manufacturer of the program about a possible update. A corrupted NTFS volume can also generate this Stop message. Run Chkdsk /f /r to detect and repair disk errors. Restart the system before the disk scan begins on a system partition. If the hard disk is SCSI, check for problems between the SCSI controller and the disk. Finally, check the System Log in Event Viewer for additional error messages that might help pinpoint the device or driver causing the error. Disabling memory caching of the BIOS might also resolve it. For more troubleshooting information about this Stop message, refer to the Microsoft Knowledge Base at http://support.microsoft.com/support.
Wednesday, April 2, 2008
Identifying PC133 Memory Modules!
PC133 Introduction - Basic
Hi My friend,
I got new knowledge on PC133 memory. It is great to know them. Let me share with you.
What you should know..
Before we show you how to distinguish PC133 memory from all others, some background information might be appropriate. Elsewhere in our Performance Center we have discussed How to Visually Identify Memory Types, How to Verify PC100 Compliant Memory and what the PC100 Standard is all about.
With the ever present push for performance, processors, motherboard buses and other computer system components have seen dramatic speed increases. With that, memory technology has been making some leaps of its own. In 1995 memory speed jumped from 33MHz to 66MHz with the release of EDO memory. In 1997 we saw SDRAM speeds jump to 66MHz with the release of PC66 SDRAM, and shortly thereafter the engineers moved the speed lever again, this time to 100MHz with the release of PC100 in 1998. Engineers, though, were not ready to quit just yet, as barely a year later, in 1999, we saw the release of PC133 SDRAM, with memory speeds running at 133MHz and higher.
During 1999 and 2000 we saw dramatic changes in the engineering and development of memory technology with the release of RDRAM (Rambus®) memory running at 800MHz and DDR SDRAM running at 266MHz. On the surface it doesn't seem to make much sense to develop DDR SDRAM at 266MHz when you have Rambus® running at 800MHz, but in truth, they are direct competitors when it comes to memory speed, as DDR SDRAM is an entirely new design that reduces DRAM latencies and substantially increases memory bandwidth. Follow these links for a brief Introduction to DDR SDRAM, as well as a Comparison of DDR SDRAM and Rambus ® memory.
In spite of these new advances though, PC100 and PC133 SDRAM, is not dead by a long shot. Now that you have some background, let's discuss briefly what PC133 SDRAM is, and how to correctly identify it when you purchase it.
As was the case in our review of PC100, PC133 SDRAM must be manufactured to meet the specific standards set by Intel. And like PC100, beware, as there are unscrupulous suppliers selling PC133 modules that do not meet the Standard and this is reflected in their performance. If you have Adobe Acrobat installed, click this link to review Intel's PC133 Validation Specifications for PC 133 Modules.
PC133 SDRAM
Synchronous dynamic random access memory (SDRAM) delivers bursts of data at very high speeds using an interface that is synchronized to the CPU clock. SDRAM emerged in 1996, and represented a big step forward from EDO technology. When manufactured, PC133 SDRAM, must meet Intel's requirements (the PC133 Standard) for use with motherboards having a 133MHz FSB (front side bus). PC133 compliant SDRAM is almost always a requirement in Pentium III, AMD Athlon and Power Mac G4 based systems. This link will provide you with a review about Memory Speed.
While PC133 SDRAM can be used with motherboards having a 100MHz front side bus, your memory will only operate as fast as the slowest "link" in your system, in this case the motherboards 100MHz front side bus. As an example, if you were to install a PC133 module in a system with a 100MHz FSB, or in a system already containing a 100MHz module, the PC133 module will operate only at 100MHz. PC133 SDRAM is available only in the form of a 168-pin DIMM (as it pertains to personal computers).
Lets review what makes a PC133 module different from its predecessors. Keep in mind, that when suppliers sell memory modules, they often provide technical specifications and descriptions of the modules performance. If your supplier isn't providing this information, beware! Below are some of the terms you may see in those descriptions. You will also find additional definitions in our Memory Glossary.
Clocks and Latency (CL=2 - CL=3)
"CL=2" (also written as "CL2" or "CAS=2") and "CL=3" (also written as "CL2" and "CAS=2") refers to a module's CAS latency. CAS latency is the amount of time it takes for your memory to respond to a command. It only affects the initial burst of data. Once data starts flowing, latency is no longer significant. Following this link will take you to a more in depth discussion of Memory Latencies.
Latency is measured in terms of clock cycles. A CL=2 chip requires two clock cycles to respond, and a CL=3 chip requires three clock cycles, therefore CL=2 chips complete the initial data access a little more quickly than CL=3 chips. Keep in mind though, a clock cycle for a system with a 100MHz front side bus is only 10 nanoseconds (10 billionths of a second), therefore don't be too surprised if you're unable to tell the difference between a CL=2 and a CL=3 chip. While most systems will accept memory modules having either a CL=2 or CL=3 chip, there are some systems that require one or the other. Generally your motherboard's manufacturer will advise you of their requirements, however should you not be able to determine this, just let us know and we will help you select the right module.
As an example, a few systems built by Dell and Gateway require a particular type of CL=2 memory known as 2-clock memory. While this memory technology is no longer used in modern systems, Crucial, Samsung and a few other manufacturers continue to offer this unique type of module for upgrade customers. If you need 2-clock memory for your system, just let us know the make and model of your computer and we will provide you with the correct module.
How does a PC determine what CL value to use?
During the startup (Boot) process, the motherboards BIOS software reads the value for CL (CAS Latency), tRCD and tRP that is programmed into the Serial Presence Detect (SPD) EEPROM on the SDRAM DIMM memory module. The memory controller will then issue SDRAM commands to meet the memory device requirements.
Let's look at the differences between PC133 and other SDRAM Memory.
As you may have noted above, the PC133 SDRAM module was designed to improve the memory bandwidth of the personal computer from 100Mhz to 133Mhz. Typically, the 133 MHz SDRAM chip has a speed rating of 7.5 nanoseconds (7.5 billionths of a second) when running on a motherboard with a 133 MHz Front Side Bus.
This table, courtesy of Micron, shows the specification and speed differences between the most recent forms of SDRAM, PC66, PC100 and PC133.
PC66 - PC100 - PC133 SDRAM COMPARISON CHART
Module
Type
SDRAM
SPEED
TIME (ns)
CLOCKS
BUS SPEED
tWR
tRP
tWR
tRP
MHz
ns
PC66
-10 10 30 1 *1
33 30
-10 10-15 30 2 2 66 15
PC100
-8A/B 15 24 2 3 100 10
-8C 15 20 2 2 100 10
-8E 15 20 2 2 100 10
PC133
-75 15 20 2 3 133 7.5
-7E 14 15 2 2 133 7.5
*As a general rule, personal computers use 2 clock memory
As you can see from the above table, memory speeds have accelerated from PC66 at 33MHz and 30 nanoseconds (30 billionths of a second) to PC133 at 133MHz and 7.5 nanoseconds (7.5 billionths of a second). We know what you're thinking, how can you really tell the difference between 30 billionths of a second and 7.5 billionths of a second? Simply put, you can't, but your computer can, and it makes a difference!
Dispelling the confusion between Front Side Bus Frequency and CPU Frequency
The Front Side Bus (FSB), the memory bus between the Processor and the Memory module, is the main information or data highway in the PC system. The faster the bus runs, the faster data can transfer between the processor and memory.
The speed of the FSB is not the same as processor speed (yet), but technology is quickly changing this, and very shortly you will see the processor and FSB running at the same speed. If you have a 600MHz Pentium processor with a 100MHz Front Side Bus, the information flowing within the processor will run at 600MHz, whenever the data is transferred outside the processor, the data will flow only at 100MHz. At present, one of the overall limiting factors in PC systems today is the bus speed. While you may have a processor running at 800 or 1,000 MHz, and memory capable of running at 800 MHZ, data transfers will never run faster than the Front Side Bus speed. Once developers conquer this limitation, personal computers will operate at speeds previously unheard of.
Now it's time to get down to the nitty gritty!
Most 133MHz SDRAM chips are actually designed to run at 150MHz and faster. These chips are often referred to as "-7.5" (7.5 nanosecond parts). You can identify the chips by reading “-7” in the last two digits on the chip part numbering found on most PC133 memory modules. The “-7” refers to the minimum operating clock cycle of the device.
How to determine the frequency of the module?
Again, the simplest way to determine if the module is PC66, PC100 or PC133, is by simply reading the last digit or two of the part number on the actual chip. Here are two examples, a PC100 module from Micron and a PC100 chip from Samsung.
As you can see from the red arrow, this Micron chip has a "-8" designation that identifies it as 100MHz bus and 10 nanosecond. As noted earlier, had this chip had a "-7" or "-7.5" designator, that would indicate it was a PC133 chip, and had it been "-10" it would be PC66. Even knowing this, should you be uncertain of the modules specifications, Micron makes it easy to verify them by providing a part number cross reference, which you can see by clicking this link.
Now let's look at the Samsung chip.
Although the above chip is made by Samsung, directly identifying the speed without a reference sheet that explains the codes is a little more difficult. The last pair of digits in the part number, “G8”, indicate that it is a 125Mhz device, or a PC100 memory chip. Recently, Samsung changed their part number scheme, and permanently removed their old reference sheets. The following links will provide you with Samsung's new SDRAM part number reference.
Briefly, here is what the part number represents. We have broken it down based upon Samsung's reference sheets:
1 2 3 4 5 6 7 8 9 10 11 12 13
KM 4 8 S 8 0 3 0 B T - G 8
1 KM indicates that the chip is a Samsung part.
2 4 = Indicates that this a DRAM part
3 8 = Indicates the chip organization (x8)
4 S = Indicates the ship is specifically SDRAM
5 8 = Indicates the density of this chip as 8M
6 0 = Indicates the Refresh, in this case 4K
7 3 = Indicates the number of chip banks (4 banks)
8 0 = Indicates type and mount of voltage (LVTTL (3.3V)
9 B = Indicates the Revision number (3rd generation)
10 T = Packaging type. In this case TSOP II (400mil)
11 - No value
12 G = Indicates Power - Auto & Self-Refresh (3.3V)
13 8 = Indicates Min. cycle time 8ns(125MHz@CL=3)
Before we close this subject, we feel it is necessary to have you understand that all too often, consumers do not read the entire part number when they inspect the memory modules they receive. All of the numbers and letters making up the part number of a memory module are important in correctly identifying its specifications. Here's a data sheet from Samsung.
Normally the five red arrows that you see above would not be present when you review a data sheet. If you look closely at each of the five part numbers, you will see that the only difference are the last two digits. Those two digits alone determine whether the module is PC66, PC100, PC125 or PC133 as you can see by the chart.
Kingston Technology uses a similar method to indicate the parameters and specifications of their memory modules, and this link will take you to the Kingston Technology Reference.
As long as your memory modules, and the chips on them, are manufactured by a major supplier, such as Micron/Crucial, Kingston, Samsung, IBM, Hyundai, NEC, Toshiba, Hitachi, you can usually rest assured that you are receiving quality memory. Just be careful to make sure that you purchase your modules from reputable resellers. It is also important to note that many manufacturers have both premium as well as inexpensive versions of their memory products. You get what you pay for! Also important, as mentioned elsewhere on this Website, some modules arriving from certain Asian countries have been re-marked to change the part information. Beware!
The Bottom Line, what makes a good PC133 Module?
When Intel introduced the PC100 SDRAM specification, a list of standards and specifications were compiled to insure the uniformity of manufacture of memory chips and modules. These standards and specifications had to be met by both semiconductor and module manufacturers to not only insure uniformity of fabrication, but also to insure the accuracy of data handling at higher DRAM speeds. As SDRAM speed changed, increasing from 100MHz to 133MHz (and above), the specifications for the new SDRAM changed as well. The PC133 Intel/JEDEC Standard still includes the following:
Minimum and maximum trace lengths for all signals on the module
Precise specifications for trace width and spacing
Detailed specifications for the distances between each circuit board layer
Only 6 layer PCB's with unbroken power and ground planes
Well balanced clock trace lengths, as well as routing, loading, and termination requirements
Series termination resistors on all data lines
Detailed SDRAM component specification
Detailed EEPROM SPD programming specification
Special Label/Marking Requirements
Electro Magnetic Interference (EMI) Suppression
Gold plated printed circuit boards
The Jedec/Intel specification goes to great length to detail each of the above issues, dictating what the manufacturer must do in order to meet the standard. In theory, as long as manufacturers meet or exceed these specifications, all memory modules produced by all manufacturers will be identical and rarely produce problems. This common uniformity standard was designed to insure that all SDRAM memory module should be created equal and there shouldn’t be any major variations between any two module made by different companies. Unfortunately though, in the real world, you will find that SDRAM modules with identical SDRAM chips, can sometimes reach entirely different frequencies for no other reason than differences in the manufacturing of their printed circuit boards and the trace layouts on them. For this reason alone, always try and purchase all of the memory you need at the same time and from the same supplier.
Conclusion
Simply put, usually the last digit or two of the part number on the memory chip will indicate the memory type. PC66 memory chips will be "12", PC100 will be either "8" or "10", and PC133 will be either "-65", "-7" or "-75", representing 6.5, 7 and 7.5 nanoseconds respectively.
Every day we field questions from people who want to upgrade their PC's by adding more memory, and one of the most Frequently Asked Questions involves that of compatibility. We constantly field questions as to whether PC100 and PC133 memory can be mixed on the same motherboard, or whether replacing PC66 memory with PC133 will make someone's system faster.
While there are many cases where PC100 modules, and even the older PC66 SDRAM modules, have worked together on the same motherboard at 133MHz bus speeds, however those situations are extremely rare and ill advised. In an emergency, anything is worth a try. Just remember that the purpose of your computer is that of dealing with data, regardless of whether you're dealing with games or physics calculations. It is pointless to mix memory types when the end result will almost certainly result in corrupted data.
When purchasing memory for a new system, make it a point to purchase all of the memory you need at the same time from the same supplier. If you are upgrading, try and match as closely as possible the memory modules you already have.
If you would like to review more about memory related issues, you may want to follow these links:
Memory, Evolution or a Revolution?
How Memory Speeds Are Determined
How to Identifying Different Memory Types
Does your memory meet the Standard?
Frequently Asked Questions About Memory
Troubleshooting Memory Problems
Megabyte (MB) vs. Megabit (Mb)
Memory Trends in 2001
Hi My friend,
I got new knowledge on PC133 memory. It is great to know them. Let me share with you.
What you should know..
Before we show you how to distinguish PC133 memory from all others, some background information might be appropriate. Elsewhere in our Performance Center we have discussed How to Visually Identify Memory Types, How to Verify PC100 Compliant Memory and what the PC100 Standard is all about.
With the ever present push for performance, processors, motherboard buses and other computer system components have seen dramatic speed increases. With that, memory technology has been making some leaps of its own. In 1995 memory speed jumped from 33MHz to 66MHz with the release of EDO memory. In 1997 we saw SDRAM speeds jump to 66MHz with the release of PC66 SDRAM, and shortly thereafter the engineers moved the speed lever again, this time to 100MHz with the release of PC100 in 1998. Engineers, though, were not ready to quit just yet, as barely a year later, in 1999, we saw the release of PC133 SDRAM, with memory speeds running at 133MHz and higher.
During 1999 and 2000 we saw dramatic changes in the engineering and development of memory technology with the release of RDRAM (Rambus®) memory running at 800MHz and DDR SDRAM running at 266MHz. On the surface it doesn't seem to make much sense to develop DDR SDRAM at 266MHz when you have Rambus® running at 800MHz, but in truth, they are direct competitors when it comes to memory speed, as DDR SDRAM is an entirely new design that reduces DRAM latencies and substantially increases memory bandwidth. Follow these links for a brief Introduction to DDR SDRAM, as well as a Comparison of DDR SDRAM and Rambus ® memory.
In spite of these new advances though, PC100 and PC133 SDRAM, is not dead by a long shot. Now that you have some background, let's discuss briefly what PC133 SDRAM is, and how to correctly identify it when you purchase it.
As was the case in our review of PC100, PC133 SDRAM must be manufactured to meet the specific standards set by Intel. And like PC100, beware, as there are unscrupulous suppliers selling PC133 modules that do not meet the Standard and this is reflected in their performance. If you have Adobe Acrobat installed, click this link to review Intel's PC133 Validation Specifications for PC 133 Modules.
PC133 SDRAM
Synchronous dynamic random access memory (SDRAM) delivers bursts of data at very high speeds using an interface that is synchronized to the CPU clock. SDRAM emerged in 1996, and represented a big step forward from EDO technology. When manufactured, PC133 SDRAM, must meet Intel's requirements (the PC133 Standard) for use with motherboards having a 133MHz FSB (front side bus). PC133 compliant SDRAM is almost always a requirement in Pentium III, AMD Athlon and Power Mac G4 based systems. This link will provide you with a review about Memory Speed.
While PC133 SDRAM can be used with motherboards having a 100MHz front side bus, your memory will only operate as fast as the slowest "link" in your system, in this case the motherboards 100MHz front side bus. As an example, if you were to install a PC133 module in a system with a 100MHz FSB, or in a system already containing a 100MHz module, the PC133 module will operate only at 100MHz. PC133 SDRAM is available only in the form of a 168-pin DIMM (as it pertains to personal computers).
Lets review what makes a PC133 module different from its predecessors. Keep in mind, that when suppliers sell memory modules, they often provide technical specifications and descriptions of the modules performance. If your supplier isn't providing this information, beware! Below are some of the terms you may see in those descriptions. You will also find additional definitions in our Memory Glossary.
Clocks and Latency (CL=2 - CL=3)
"CL=2" (also written as "CL2" or "CAS=2") and "CL=3" (also written as "CL2" and "CAS=2") refers to a module's CAS latency. CAS latency is the amount of time it takes for your memory to respond to a command. It only affects the initial burst of data. Once data starts flowing, latency is no longer significant. Following this link will take you to a more in depth discussion of Memory Latencies.
Latency is measured in terms of clock cycles. A CL=2 chip requires two clock cycles to respond, and a CL=3 chip requires three clock cycles, therefore CL=2 chips complete the initial data access a little more quickly than CL=3 chips. Keep in mind though, a clock cycle for a system with a 100MHz front side bus is only 10 nanoseconds (10 billionths of a second), therefore don't be too surprised if you're unable to tell the difference between a CL=2 and a CL=3 chip. While most systems will accept memory modules having either a CL=2 or CL=3 chip, there are some systems that require one or the other. Generally your motherboard's manufacturer will advise you of their requirements, however should you not be able to determine this, just let us know and we will help you select the right module.
As an example, a few systems built by Dell and Gateway require a particular type of CL=2 memory known as 2-clock memory. While this memory technology is no longer used in modern systems, Crucial, Samsung and a few other manufacturers continue to offer this unique type of module for upgrade customers. If you need 2-clock memory for your system, just let us know the make and model of your computer and we will provide you with the correct module.
How does a PC determine what CL value to use?
During the startup (Boot) process, the motherboards BIOS software reads the value for CL (CAS Latency), tRCD and tRP that is programmed into the Serial Presence Detect (SPD) EEPROM on the SDRAM DIMM memory module. The memory controller will then issue SDRAM commands to meet the memory device requirements.
Let's look at the differences between PC133 and other SDRAM Memory.
As you may have noted above, the PC133 SDRAM module was designed to improve the memory bandwidth of the personal computer from 100Mhz to 133Mhz. Typically, the 133 MHz SDRAM chip has a speed rating of 7.5 nanoseconds (7.5 billionths of a second) when running on a motherboard with a 133 MHz Front Side Bus.
This table, courtesy of Micron, shows the specification and speed differences between the most recent forms of SDRAM, PC66, PC100 and PC133.
PC66 - PC100 - PC133 SDRAM COMPARISON CHART
Module
Type
SDRAM
SPEED
TIME (ns)
CLOCKS
BUS SPEED
tWR
tRP
tWR
tRP
MHz
ns
PC66
-10 10 30 1 *1
33 30
-10 10-15 30 2 2 66 15
PC100
-8A/B 15 24 2 3 100 10
-8C 15 20 2 2 100 10
-8E 15 20 2 2 100 10
PC133
-75 15 20 2 3 133 7.5
-7E 14 15 2 2 133 7.5
*As a general rule, personal computers use 2 clock memory
As you can see from the above table, memory speeds have accelerated from PC66 at 33MHz and 30 nanoseconds (30 billionths of a second) to PC133 at 133MHz and 7.5 nanoseconds (7.5 billionths of a second). We know what you're thinking, how can you really tell the difference between 30 billionths of a second and 7.5 billionths of a second? Simply put, you can't, but your computer can, and it makes a difference!
Dispelling the confusion between Front Side Bus Frequency and CPU Frequency
The Front Side Bus (FSB), the memory bus between the Processor and the Memory module, is the main information or data highway in the PC system. The faster the bus runs, the faster data can transfer between the processor and memory.
The speed of the FSB is not the same as processor speed (yet), but technology is quickly changing this, and very shortly you will see the processor and FSB running at the same speed. If you have a 600MHz Pentium processor with a 100MHz Front Side Bus, the information flowing within the processor will run at 600MHz, whenever the data is transferred outside the processor, the data will flow only at 100MHz. At present, one of the overall limiting factors in PC systems today is the bus speed. While you may have a processor running at 800 or 1,000 MHz, and memory capable of running at 800 MHZ, data transfers will never run faster than the Front Side Bus speed. Once developers conquer this limitation, personal computers will operate at speeds previously unheard of.
Now it's time to get down to the nitty gritty!
Most 133MHz SDRAM chips are actually designed to run at 150MHz and faster. These chips are often referred to as "-7.5" (7.5 nanosecond parts). You can identify the chips by reading “-7” in the last two digits on the chip part numbering found on most PC133 memory modules. The “-7” refers to the minimum operating clock cycle of the device.
How to determine the frequency of the module?
Again, the simplest way to determine if the module is PC66, PC100 or PC133, is by simply reading the last digit or two of the part number on the actual chip. Here are two examples, a PC100 module from Micron and a PC100 chip from Samsung.
As you can see from the red arrow, this Micron chip has a "-8" designation that identifies it as 100MHz bus and 10 nanosecond. As noted earlier, had this chip had a "-7" or "-7.5" designator, that would indicate it was a PC133 chip, and had it been "-10" it would be PC66. Even knowing this, should you be uncertain of the modules specifications, Micron makes it easy to verify them by providing a part number cross reference, which you can see by clicking this link.
Now let's look at the Samsung chip.
Although the above chip is made by Samsung, directly identifying the speed without a reference sheet that explains the codes is a little more difficult. The last pair of digits in the part number, “G8”, indicate that it is a 125Mhz device, or a PC100 memory chip. Recently, Samsung changed their part number scheme, and permanently removed their old reference sheets. The following links will provide you with Samsung's new SDRAM part number reference.
Briefly, here is what the part number represents. We have broken it down based upon Samsung's reference sheets:
1 2 3 4 5 6 7 8 9 10 11 12 13
KM 4 8 S 8 0 3 0 B T - G 8
1 KM indicates that the chip is a Samsung part.
2 4 = Indicates that this a DRAM part
3 8 = Indicates the chip organization (x8)
4 S = Indicates the ship is specifically SDRAM
5 8 = Indicates the density of this chip as 8M
6 0 = Indicates the Refresh, in this case 4K
7 3 = Indicates the number of chip banks (4 banks)
8 0 = Indicates type and mount of voltage (LVTTL (3.3V)
9 B = Indicates the Revision number (3rd generation)
10 T = Packaging type. In this case TSOP II (400mil)
11 - No value
12 G = Indicates Power - Auto & Self-Refresh (3.3V)
13 8 = Indicates Min. cycle time 8ns(125MHz@CL=3)
Before we close this subject, we feel it is necessary to have you understand that all too often, consumers do not read the entire part number when they inspect the memory modules they receive. All of the numbers and letters making up the part number of a memory module are important in correctly identifying its specifications. Here's a data sheet from Samsung.
Normally the five red arrows that you see above would not be present when you review a data sheet. If you look closely at each of the five part numbers, you will see that the only difference are the last two digits. Those two digits alone determine whether the module is PC66, PC100, PC125 or PC133 as you can see by the chart.
Kingston Technology uses a similar method to indicate the parameters and specifications of their memory modules, and this link will take you to the Kingston Technology Reference.
As long as your memory modules, and the chips on them, are manufactured by a major supplier, such as Micron/Crucial, Kingston, Samsung, IBM, Hyundai, NEC, Toshiba, Hitachi, you can usually rest assured that you are receiving quality memory. Just be careful to make sure that you purchase your modules from reputable resellers. It is also important to note that many manufacturers have both premium as well as inexpensive versions of their memory products. You get what you pay for! Also important, as mentioned elsewhere on this Website, some modules arriving from certain Asian countries have been re-marked to change the part information. Beware!
The Bottom Line, what makes a good PC133 Module?
When Intel introduced the PC100 SDRAM specification, a list of standards and specifications were compiled to insure the uniformity of manufacture of memory chips and modules. These standards and specifications had to be met by both semiconductor and module manufacturers to not only insure uniformity of fabrication, but also to insure the accuracy of data handling at higher DRAM speeds. As SDRAM speed changed, increasing from 100MHz to 133MHz (and above), the specifications for the new SDRAM changed as well. The PC133 Intel/JEDEC Standard still includes the following:
Minimum and maximum trace lengths for all signals on the module
Precise specifications for trace width and spacing
Detailed specifications for the distances between each circuit board layer
Only 6 layer PCB's with unbroken power and ground planes
Well balanced clock trace lengths, as well as routing, loading, and termination requirements
Series termination resistors on all data lines
Detailed SDRAM component specification
Detailed EEPROM SPD programming specification
Special Label/Marking Requirements
Electro Magnetic Interference (EMI) Suppression
Gold plated printed circuit boards
The Jedec/Intel specification goes to great length to detail each of the above issues, dictating what the manufacturer must do in order to meet the standard. In theory, as long as manufacturers meet or exceed these specifications, all memory modules produced by all manufacturers will be identical and rarely produce problems. This common uniformity standard was designed to insure that all SDRAM memory module should be created equal and there shouldn’t be any major variations between any two module made by different companies. Unfortunately though, in the real world, you will find that SDRAM modules with identical SDRAM chips, can sometimes reach entirely different frequencies for no other reason than differences in the manufacturing of their printed circuit boards and the trace layouts on them. For this reason alone, always try and purchase all of the memory you need at the same time and from the same supplier.
Conclusion
Simply put, usually the last digit or two of the part number on the memory chip will indicate the memory type. PC66 memory chips will be "12", PC100 will be either "8" or "10", and PC133 will be either "-65", "-7" or "-75", representing 6.5, 7 and 7.5 nanoseconds respectively.
Every day we field questions from people who want to upgrade their PC's by adding more memory, and one of the most Frequently Asked Questions involves that of compatibility. We constantly field questions as to whether PC100 and PC133 memory can be mixed on the same motherboard, or whether replacing PC66 memory with PC133 will make someone's system faster.
While there are many cases where PC100 modules, and even the older PC66 SDRAM modules, have worked together on the same motherboard at 133MHz bus speeds, however those situations are extremely rare and ill advised. In an emergency, anything is worth a try. Just remember that the purpose of your computer is that of dealing with data, regardless of whether you're dealing with games or physics calculations. It is pointless to mix memory types when the end result will almost certainly result in corrupted data.
When purchasing memory for a new system, make it a point to purchase all of the memory you need at the same time from the same supplier. If you are upgrading, try and match as closely as possible the memory modules you already have.
If you would like to review more about memory related issues, you may want to follow these links:
Memory, Evolution or a Revolution?
How Memory Speeds Are Determined
How to Identifying Different Memory Types
Does your memory meet the Standard?
Frequently Asked Questions About Memory
Troubleshooting Memory Problems
Megabyte (MB) vs. Megabit (Mb)
Memory Trends in 2001
Sunday, March 30, 2008
谁让我变慢?计算机速度与硬件搭配
一直以来,我们在为DIY电脑的硬件搭配上下了不少工夫,花了不少心思,但总会有点儿意犹未尽,难舍难分的感觉;因为,DIY电脑就象是加工一件艺术品,没有国界,却有民族;彰显民族个性的艺术也就是世界的艺术。犹如配置一台电脑,它包含很多个人因素在里面,这里既有个人需求、个人意识,也有个人感情、个人欲望。今天,我们就来说点儿自己对DIY电脑的一些看法。
曾经有很多朋友在配置电脑的时候总是爱问,影响电脑运行速度最主要的是什么?呵呵!要回答这个问题还真难,真的很难,我是这样回答的,影响电脑速度的是你自己的心态;如果你心态正了386就很快,心态不正“银河”也很慢!是啊,用电脑和比电脑是两个完全不同的概念,没有可比性;如果你心情浮躁,任何机器都会不听使唤,都会很慢,如果你心情好了,任何电脑用起来都会游刃有余。一个小插曲,说说我们今天该说的吧!
在一台电脑里,主要由主板、CPU、硬盘、内存、显卡、光驱、电源、显示器、键盘、鼠标等等部件构成;那么,到底谁是影响整个电脑运行速度的瓶颈呢?我以为,既不是CPU,也不是主板,更不是内存;比如酷睿E6300超到400M外频,总线频率已经达到1600M,可是现在好象FSB达到1600M的主板似乎未见,FSB1066M的主板可以稳定的把E6300的总线超到1600M,所以,主板的FSB和CPU的总线频率只有兼容性的问题,没有相互制约的瓶颈问题。其实,无论是CPU、内存、硬盘、光驱、显卡、声卡,它们都得通过主板来进行数据交换和信息存储,在这些环节里面,真正影响速度的应该是这些硬件之间的交换速度;因此,我把外频看做是计算机运算速度的中轴线,并以这个中轴线的带宽来取舍计算机配置;以E6300为例,它的外频是266M,那么无论它本身的运算速度有多快,它和内存、主板的交换速度也应该不超过266M(超频不在此列),这样一来我们就知道现在的CPU为什么都锁住了倍频,而放开外频,无论是Intel还是AMD为什么都愿意提升CPU外频而降低倍频了,因为增加倍频给CPU增加的内部负担要远远大于调高外频对CPU增加的负担;显而易见,两个城市之间是一条完好的高速公路,那么运行起来应该是比较快捷的,如果在这条高速公路中间有那么几公里是乡村道路,无论你开多快的车也会影响整个行程,甚至会塞车。
结合到我们实际DIY计算机时,我们应该怎么取舍各个硬件的技术指标呢?举个例子,现在市场上销售得比较好的(今天去电脑城打探了一下)主板大约在600—800元左右;本着经济节约的原则,我们随便拿一款集成主板,技嘉 945GCM-S2这块板子报价在600元上下,支持Intel Core2 Extreme/Core2 Duo/Pentium D等处理器,应该说从实际运行速度来讲并不差,因为集成了显卡,所以会在图形图象方面差些;这块主板FSB达到 1066MHz 且支持双通道DDRII 533/400内存,如果这块主板配上总线频率为1066M的E6300,我相信,在无特殊要求的情况下实际使用效果应该不错;因为E6300的外频266M和DDRII 533的内存工作频率266M正好吻合,它们和主板的交换速度处在同一频率上,三者都能发挥出最佳性能,我们如果打开CPU—Z,就会看到前端总线和内存的比例为1 :1(同步运行),也就是说,这三大件的交换速度是一样的,谁也没有浪费资源,谁也没有影响谁的速度,也可以比喻为这三个城市之间的道路是一样宽;回过头来,我们如果使用E6750这种外频为333M的CPU,那么就需要DDRII 667的内存了,换句话说,DDRII 667内存的运行速度已经能够满足外频为333M的CPU了;此时,我们若是使用DDRII 800的内存,那你的CPU—Z里肯定会显示前端总线和内存的比例为3 :4或者4 :5(异步运行);也就是说,内存的运行速度要高于CPU和主板的运行速度20%—25% ,造成了内存运行速度的浪费。
在实际使用中,我们会发现,真正影响整台计算机速度的并不是内存的频率,而是在满足CPU运算速度的情况下,内存的容量显得更为重要;有兴趣的朋友可以拿一个主流965主板配上E6300(不超频),再分别配上相同容量的DDRII 533 、 DDRII 667 、 DDRII 800内存,测试一下运算速度,看看相差多少......其实这一点我们可以在一些专业领域的计算机和服务器里得到证实,不再细讲。
综合上面所述观点,那么真正影响我们计算机实际使用速度的瓶颈在哪里呢?我想朋友们已经想到了,不错!就是近年来发展缓慢,生产成本相对较高的硬盘、光驱等一些带有机械伺服系统的硬件,它们才是制约我们整个计算机运行速度的瓶颈所在。我们知道DDRII 533的内存运行速度是4.26GB/s ,DDRII 667的运行速度为5.4GB/s ,DDRII 800的运行速度为{xxx}GB/s ;再看看我们目前离不开的机械硬盘,以7200转、SATA接口为例,接口速率通常为150MB/s — 300MB/s ,实际传输速率还要低 ;跟内存一比,就知道多么逊色了,至于光驱,就更不用说了吧!
到这里,也许会有朋友说,那我们的主板、CPU、内存都那么快的速度,是不是用起来都受到限制了呢?这一点也不对,因为我们打开任意一个应用程序时都会在任务管理器的进程里看见这个程序正在运行,而这个程序的运行占用了我们的CPU资源和内存资源,因此,你运行这个程序的速度实际上是内存与CPU的交换速度,并非是硬盘和CPU的交换速度。
简单的做个总结,我们在配置电脑时,根据自己的实际需求,不要盲目追求高频率的主板、 CPU、内存;一切以实际出发,以整个平台科学搭配、稳定运行、合理使用为原则;既有性价比的体现,又没有资源的浪费为最佳。
曾经有很多朋友在配置电脑的时候总是爱问,影响电脑运行速度最主要的是什么?呵呵!要回答这个问题还真难,真的很难,我是这样回答的,影响电脑速度的是你自己的心态;如果你心态正了386就很快,心态不正“银河”也很慢!是啊,用电脑和比电脑是两个完全不同的概念,没有可比性;如果你心情浮躁,任何机器都会不听使唤,都会很慢,如果你心情好了,任何电脑用起来都会游刃有余。一个小插曲,说说我们今天该说的吧!
在一台电脑里,主要由主板、CPU、硬盘、内存、显卡、光驱、电源、显示器、键盘、鼠标等等部件构成;那么,到底谁是影响整个电脑运行速度的瓶颈呢?我以为,既不是CPU,也不是主板,更不是内存;比如酷睿E6300超到400M外频,总线频率已经达到1600M,可是现在好象FSB达到1600M的主板似乎未见,FSB1066M的主板可以稳定的把E6300的总线超到1600M,所以,主板的FSB和CPU的总线频率只有兼容性的问题,没有相互制约的瓶颈问题。其实,无论是CPU、内存、硬盘、光驱、显卡、声卡,它们都得通过主板来进行数据交换和信息存储,在这些环节里面,真正影响速度的应该是这些硬件之间的交换速度;因此,我把外频看做是计算机运算速度的中轴线,并以这个中轴线的带宽来取舍计算机配置;以E6300为例,它的外频是266M,那么无论它本身的运算速度有多快,它和内存、主板的交换速度也应该不超过266M(超频不在此列),这样一来我们就知道现在的CPU为什么都锁住了倍频,而放开外频,无论是Intel还是AMD为什么都愿意提升CPU外频而降低倍频了,因为增加倍频给CPU增加的内部负担要远远大于调高外频对CPU增加的负担;显而易见,两个城市之间是一条完好的高速公路,那么运行起来应该是比较快捷的,如果在这条高速公路中间有那么几公里是乡村道路,无论你开多快的车也会影响整个行程,甚至会塞车。
结合到我们实际DIY计算机时,我们应该怎么取舍各个硬件的技术指标呢?举个例子,现在市场上销售得比较好的(今天去电脑城打探了一下)主板大约在600—800元左右;本着经济节约的原则,我们随便拿一款集成主板,技嘉 945GCM-S2这块板子报价在600元上下,支持Intel Core2 Extreme/Core2 Duo/Pentium D等处理器,应该说从实际运行速度来讲并不差,因为集成了显卡,所以会在图形图象方面差些;这块主板FSB达到 1066MHz 且支持双通道DDRII 533/400内存,如果这块主板配上总线频率为1066M的E6300,我相信,在无特殊要求的情况下实际使用效果应该不错;因为E6300的外频266M和DDRII 533的内存工作频率266M正好吻合,它们和主板的交换速度处在同一频率上,三者都能发挥出最佳性能,我们如果打开CPU—Z,就会看到前端总线和内存的比例为1 :1(同步运行),也就是说,这三大件的交换速度是一样的,谁也没有浪费资源,谁也没有影响谁的速度,也可以比喻为这三个城市之间的道路是一样宽;回过头来,我们如果使用E6750这种外频为333M的CPU,那么就需要DDRII 667的内存了,换句话说,DDRII 667内存的运行速度已经能够满足外频为333M的CPU了;此时,我们若是使用DDRII 800的内存,那你的CPU—Z里肯定会显示前端总线和内存的比例为3 :4或者4 :5(异步运行);也就是说,内存的运行速度要高于CPU和主板的运行速度20%—25% ,造成了内存运行速度的浪费。
在实际使用中,我们会发现,真正影响整台计算机速度的并不是内存的频率,而是在满足CPU运算速度的情况下,内存的容量显得更为重要;有兴趣的朋友可以拿一个主流965主板配上E6300(不超频),再分别配上相同容量的DDRII 533 、 DDRII 667 、 DDRII 800内存,测试一下运算速度,看看相差多少......其实这一点我们可以在一些专业领域的计算机和服务器里得到证实,不再细讲。
综合上面所述观点,那么真正影响我们计算机实际使用速度的瓶颈在哪里呢?我想朋友们已经想到了,不错!就是近年来发展缓慢,生产成本相对较高的硬盘、光驱等一些带有机械伺服系统的硬件,它们才是制约我们整个计算机运行速度的瓶颈所在。我们知道DDRII 533的内存运行速度是4.26GB/s ,DDRII 667的运行速度为5.4GB/s ,DDRII 800的运行速度为{xxx}GB/s ;再看看我们目前离不开的机械硬盘,以7200转、SATA接口为例,接口速率通常为150MB/s — 300MB/s ,实际传输速率还要低 ;跟内存一比,就知道多么逊色了,至于光驱,就更不用说了吧!
到这里,也许会有朋友说,那我们的主板、CPU、内存都那么快的速度,是不是用起来都受到限制了呢?这一点也不对,因为我们打开任意一个应用程序时都会在任务管理器的进程里看见这个程序正在运行,而这个程序的运行占用了我们的CPU资源和内存资源,因此,你运行这个程序的速度实际上是内存与CPU的交换速度,并非是硬盘和CPU的交换速度。
简单的做个总结,我们在配置电脑时,根据自己的实际需求,不要盲目追求高频率的主板、 CPU、内存;一切以实际出发,以整个平台科学搭配、稳定运行、合理使用为原则;既有性价比的体现,又没有资源的浪费为最佳。
什么是CPU外频?
外频是CPU乃至整个计算机系统的基准频率,单位是MHz(兆赫兹)。在早期的电脑中,内存与主板之间的同步运行的速度等于外频,在这种方式下,可以理解为CPU外频直接与内存相连通,实现两者间的同步运行状态。对于目前的计算机系统来说,两者完全可以不相同,但是外频的意义仍然存在,计算机系统中大多数的频率都是在外频的基础上,乘以一定的倍数来实现,这个倍数可以是大于1的,也可以是小于1的。
说到处理器外频,就要提到与之密切相关的两个概念:倍频与主频,主频就是CPU的时钟频率;倍频即主频与外频之比的倍数。主频、外频、倍频,其关系式:主频=外频×倍频。
在486之前,CPU的主频还处于一个较低的阶段,CPU的主频一般都等于外频。而在486出现以后,由于CPU工作频率不断提高,而PC机的一些其他设备(如插卡、硬盘等)却受到工艺的限制,不能承受更高的频率,因此限制了CPU频率的进一步提高。因此出现了倍频技术,该技术能够使CPU内部工作频率变为外部频率的倍数,从而通过提升倍频而达到提升主频的目的。倍频技术就是使外部设备可以工作在一个较低外频上,而CPU主频是外频的倍数。
在Pentium时代,CPU的外频一般是60/66MHz,从Pentium Ⅱ 350开始,CPU外频提高到100MHz,目前CPU外频已经达到了200MHz。由于正常情况下外频和内存总线频率相同,所以当CPU外频提高后,与内存之间的交换速度也相应得到了提高,对提高电脑整体运行速度影响较大。
外频与前端总线(FSB)频率很容易被混为一谈。前端总线的速度指的是CPU和北桥芯片间总线的速度,更实质性的表示了CPU和外界数据传输的速度。而外频的概念是建立在数字脉冲信号震荡速度基础之上的,也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一万万次,它更多的影响了PCI及其他总线的频率。之所以前端总线与外频这两个概念容易混淆,主要的原因是在以前的很长一段时间里(主要是在Pentium 4出现之前和刚出现Pentium 4时),前端总线频率与外频是相同的,因此往往直接称前端总线为外频,最终造成这样的误会。随着计算机技术的发展,人们发现前端总线频率需要高于外频,因此采用了QDR(Quad Date Rate)技术,或者其他类似的技术实现这个目的。这些技术的原理类似于AGP的2X或者4X,它们使得前端总线的频率成为外频的2倍、4倍甚至更高,从此之后前端总线和外频的区别才开始被人们重视起来。
一个CPU默认的外频只有一个,主板必须能支持这个外频。因此在选购主板和CPU时必须注意这点,如果两者不匹配,系统就无法工作。此外,现在CPU的倍频很多已经被锁定,所以超频时经常需要超外频。外频改变后系统很多其他频率也会改变,除了CPU主频外,前端总线频率、PCI等各种接口频率,包括硬盘接口的频率都会改变,都可能造成系统无法正常运行。当然有些主板可以提供锁定各种接口频率的功能,对成功超频有很大帮助。超频有风险,甚至会损坏计算机硬件。
说到处理器外频,就要提到与之密切相关的两个概念:倍频与主频,主频就是CPU的时钟频率;倍频即主频与外频之比的倍数。主频、外频、倍频,其关系式:主频=外频×倍频。
在486之前,CPU的主频还处于一个较低的阶段,CPU的主频一般都等于外频。而在486出现以后,由于CPU工作频率不断提高,而PC机的一些其他设备(如插卡、硬盘等)却受到工艺的限制,不能承受更高的频率,因此限制了CPU频率的进一步提高。因此出现了倍频技术,该技术能够使CPU内部工作频率变为外部频率的倍数,从而通过提升倍频而达到提升主频的目的。倍频技术就是使外部设备可以工作在一个较低外频上,而CPU主频是外频的倍数。
在Pentium时代,CPU的外频一般是60/66MHz,从Pentium Ⅱ 350开始,CPU外频提高到100MHz,目前CPU外频已经达到了200MHz。由于正常情况下外频和内存总线频率相同,所以当CPU外频提高后,与内存之间的交换速度也相应得到了提高,对提高电脑整体运行速度影响较大。
外频与前端总线(FSB)频率很容易被混为一谈。前端总线的速度指的是CPU和北桥芯片间总线的速度,更实质性的表示了CPU和外界数据传输的速度。而外频的概念是建立在数字脉冲信号震荡速度基础之上的,也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一万万次,它更多的影响了PCI及其他总线的频率。之所以前端总线与外频这两个概念容易混淆,主要的原因是在以前的很长一段时间里(主要是在Pentium 4出现之前和刚出现Pentium 4时),前端总线频率与外频是相同的,因此往往直接称前端总线为外频,最终造成这样的误会。随着计算机技术的发展,人们发现前端总线频率需要高于外频,因此采用了QDR(Quad Date Rate)技术,或者其他类似的技术实现这个目的。这些技术的原理类似于AGP的2X或者4X,它们使得前端总线的频率成为外频的2倍、4倍甚至更高,从此之后前端总线和外频的区别才开始被人们重视起来。
一个CPU默认的外频只有一个,主板必须能支持这个外频。因此在选购主板和CPU时必须注意这点,如果两者不匹配,系统就无法工作。此外,现在CPU的倍频很多已经被锁定,所以超频时经常需要超外频。外频改变后系统很多其他频率也会改变,除了CPU主频外,前端总线频率、PCI等各种接口频率,包括硬盘接口的频率都会改变,都可能造成系统无法正常运行。当然有些主板可以提供锁定各种接口频率的功能,对成功超频有很大帮助。超频有风险,甚至会损坏计算机硬件。
Subscribe to:
Posts (Atom)